
On the dynamics of coupled S = 1/2 antiferromagnetic zigzag chains

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 7633

(http://iopscience.iop.org/0953-8984/12/34/309)

Download details:

IP Address: 171.66.16.221

The article was downloaded on 16/05/2010 at 06:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/34
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 12 (2000) 7633–7645. Printed in the UK PII: S0953-8984(00)14277-8

On the dynamics of coupled S = 1/2 antiferromagnetic zigzag
chains

M Müller and H-J Mikeska
Institut für Theoretische Physik, Universität Hannover, 30167 Hannover, Germany

Received 25 May 2000

Abstract. We investigate the elementary excitations of quasi-one-dimensional S = 1
2 systems

built up from zigzag chains with general isotropic exchange constants, using exact (Lanczos)
diagonalization for 24 spins and series expansions starting from the decoupled dimer limit. For
the ideal one-dimensional zigzag chain we discuss the systematic variation of the basic (magnon)
triplet excitation with general exchange parameters and in particular the presence of practically flat
dispersions in certain regions of phase space. We extend the dimer expansion in order to include
the effects of three-dimensional interactions on the spectra of weakly interacting zigzag chains.
In an application to KCuCl3 we show that this approach allows us to determine the exchange
interactions between individual pairs of spins from the spectra as determined in recent neutron
scattering experiments.

1. Introduction

Spin systems consisting of chainlike or ladderlike structures as basic building blocks have
recently attracted much attention. These systems are of interest on the one hand as one-
dimensional (1D) model systems allowing one to study quantum phase transitions related to
the existence of a spin gap and their dependence on the exchange parameters [1, 2]; on the
other hand they describe an increasing number of real materials when an additional (small)
exchange coupling in the remaining two dimensions is introduced [3]. A material of particular
recent experimental interest is KCuCl3 [4, 5].

We have performed an investigation of the dynamics of such systems with a twofold aim:

(i) We discuss the spectrum ω(qx) of the low-lying triplet excitations in the ideal 1D
system over a wide range of exchange parameters using both series expansions and exact
diagonalization, in order to determine the range of applicability of the series expansion
approach and to study the validity of using an effective interaction between dimers. We
find and discuss in particular a regime in phase space with extremely small dispersion and
a minimum of ω(qx) at finite wavevector 0 < qx < π .

(ii) We extend the dimer expansion to include 3D couplings and apply this method in particular
to a discussion of the dynamics of the quasi-zigzag-ladder material KCuCl3 in terms of
microscopic exchange parameters.

Of particular interest as a 1D building block for this type of material is the S = 1
2 zigzag

chain, as shown in figure 1 and defined by the following Hamiltonian:

H =
L∑
i=1

J �S1,i · �S2,i + J1 �S1,i · �S2,i+1 + J2(�S1,i · �S1,i+1 + �S2,i · �S2,i+1). (1)
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Figure 1. The zigzag chain as defined by (1).

On the theoretical side, this generic 1D model interpolates between a number of seemingly
different limiting cases: it is an alternative way to formulate the Hamiltonian for the generalized
S = 1

2 spin ladder, generalized to include one diagonal interaction, or equivalently the S = 1
2

chain with nearest-neighbour (NN) alternating exchange and next-nearest-neighbour exchange
(we use the shorthand ‘NNNA chain’ in the following). It thus covers the well-known limiting
models of the isotropic S = 1

2 Heisenberg chain (HAF, J = J1, J2 = 0), the standard
antiferromagnetic S = 1

2 ladder (J1 = 0, J = J2 > 0), the weakly interacting dimer chain
(J1, J2 � J ) and the S = 1 antiferromagnetic (Haldane) chain (J1 → −∞, J + 2J2 > 0). It
can alternatively be considered as a two-legged spin ladder with rung coupling J , leg coupling
J2 and additional diagonal coupling J1.

The theoretical interest in the dynamics of the NNNA chain goes back to the work of
Shastry and Sutherland [6], who identified the elementary excitations without alternation as
free particles (spinons), which may become bound. A variational approach to the excitations
of the NNNA chain based on this concept [7] has recently been shown to cover qualitatively
the transition from free spinons to the Haldane triplet.

In a first approximation real materials are often considered as examples of 1D chains
with a Hamiltonian as given in equation (1); then they realize different points in the phase
diagram spanned by the interaction constants J1, J2 and show why it is of interest to describe
systematically the variation of static and dynamic properties with the parameters J1, J2.
Static properties, such as susceptibility and specific heat, however, have turned out to be
rather insensitive to the details of the microscopic Hamiltonian [8] and, in the case of
(VO)2P2O7 [9–11], have even not been able to reveal the basic interactions as two instead
of one dimensional.

Thus for a description of real materials a systematic microscopic treatment of the dynamics
is of particular importance. In section 2 we present a systematic overview of the dynamics
of the 1D system, discussing both general properties as well as comparing results from exact
diagonalization to results from series expansions. In section 3 we use the series expansion
approach to calculate the low-lying excitations in a 3D material with the structure of KCuCl3
in terms of the microscopic Hamiltonian. This will allow us to go beyond the determination
of effective dimer exchange parameters in recent work [4,5] and to determine the microscopic
exchange parameters. A summary will be given in the concluding section 4.

2. Elementary excitations of the 1D zigzag chain

We start with a short summary of the symmetries of the 1D system (the chain direction is
denoted as the x-axis): translational symmetry is described by the wavevector qx defined
in a Brillouin zone −π/a < qx < +π/a; the unit cell of length a contains two spins, or
equivalently one dimer (one singlet in the limit J1 = J2 = 0). We thus use the conventional
notation for ladders: a is the distance between rungs, whereas the distance between spins in
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the NNNA-chain picture is a/2. We thus expect two basic excitations per unit cell. We will
use units with a = 1 in the following. The excitation frequencies at wavevectors qx and −qx
are equal owing to reflection symmetry along the chain.

For special points in the phase diagram, additional symmetries exist:

• Without alternation (J1 = J ) it is natural to use a unit cell of length ã = 1
2a containing

only one spin. Our Brillouin zone is half of this Brillouin zone of the uniform chain
and the excitations of the conventional spin chain will appear folded back to our smaller
Brillouin zone.

• For the ladder symmetry (J1 = 0) there exists a quantum number parity, P , resulting from
the interchange of the two legs and we can classify states as positive or negative under this
reflection. Each dimer in the singlet (triplet) state contributes a factor of −1 (+1) to this
parity. An alternative notation introduces the component q⊥ with values 0 (corresponding
to P = +1) and π (corresponding to P = −1).

The ground state is a singlet in the whole phase plane and the lowest excited state is
generally a triplet. The ground states for the ladder symmetry (J1 = 0) have parity P = +1
for L even.

We have studied the dispersion ω(qx) of the basic triplet excitation for a typical variety
of paths in the J1–J2 parameter space by two methods:

(i) By exact numerical diagonalization, using the Lanczos algorithm, we have calculated
ω(qx) for the lowest excited states (between two and four states) for 24 spins, i.e. for
seven different values of wavevector qx .

(ii) We have performed series expansions around the dimer point, J1 = J2 = 0, up to third
order analytically and up to tenth order after implementation of the cluster algorithm
[12, 13] on an Alpha workstation. Thus we have obtained the ground-state energy E0

and an effective Hamiltonian which can be diagonalized by a Fourier transformation.
Finally we get the dispersion relation for the lowest excited state expressed as the series∑
n an cos(nqx).

In the following we present a number of results for the 1D zigzag chain which prepare the
stage for the first application of the method to a non-trivial 3D system in section 3 and also
add some new aspects to the large number of previous studies on the 1D system defined by
equation (1) in recent years. To give a short review of existing work we mention first that the
dimer series expansion approach started when the work of Brooks-Harris [14] was revived by
Uhrig [15] in the context of CuGeO3. The expansion for the triplet dispersion was extended to
high orders recently by Oitmaa et al [16] for ladders to eighth order, by Barnes et al [17] for the
Heisenberg alternating chain to ninth order and by Singh and Zheng [18] for the disorder line
to the twenty-third order (using a special symmetry on this line). The model of equation (1)
was also treated by alternative methods involving random-phase approximation [19], Brückner
theory for the equivalent dilute Bose gas [20, 21], exact diagonalization [22] and continued-
fraction expansion based on ED results [23] and the DMRG [24]. From these studies a rather
complete picture of the low-energy dynamics of the 1D zigzag chain has emerged. In this
section we supplement this picture with the following two remarks.

We start from the neighbourhood of the dimer point where an expansion in J1, J2 to low
orders is sufficient. Up to third order the following result for the dispersion is obtained (as given
in reference [15]; frequency and exchange constants are measured in units of the intradimer
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exchange J from now on):

ω(qx) = 1 − J 2
1

4
(1 + J2) +

3

8

(
J2 − J1

2

)2(
2 + J2 − J1

2

)

+

[
J2 − J1

2
− J 2

1

4
(1 + J2)− 1

4

(
J2 − J1

2

)3
]

cos qx

− 1

4

(
J2 − J1

2

)2(
1 + J2 +

J1

2

)
cos 2qx +

1

8

(
J2 − J1

2

)3

cos 3qx. (2)

In first-order perturbation theory in J1 and J2, the spectrum is dispersionless on the
Shastry–Sutherland line J1 = 2J2 (also known as the ‘disorder line’). Equation (2) also
shows the general feature that the location of the minimum of the dispersion curve shifts from
qx = 0 to qx = π somewhere close to crossing this line.

In recent approximate theoretical treatments of interacting dimer systems [5, 25] the
exchange interactions between individual dimers were reduced to an effective interaction
between dimers. For the present 1D zigzag chain the result of this approximation is that
only the combination J2 − 1

2J1 enters into the dispersion. In more detail, the result is

ω(qx) =
√

1 + 2 δω(1)(qx) (3)

where 1 + δω(1)(qx) is the dispersion in lowest order, i.e. the result of simple propagation of
an excited dimer triplet without considering its coupling to higher-energy modes. Evidently
this is true in lowest order of the expansion; it is seen, however, already from equation (2) that
additional terms which depend on the individual exchange interactions enter in higher order.
Comparing the higher-order coefficients in the series expansion we find that the effective dimer
approximation of equation (3) amounts to keeping only the leading (i.e. lowest) powers in J1, J2

for each coefficient an of cos(nqx).
For a quantitative check of the effective dimer approximation we refer first to reference [18]

where the dispersion on the disorder line, i.e. for fixed J2 − 1
2J1 = 0, is shown. The effective

dimer approximation is reasonable for a large part of the line but deteriorates rapidly when
the non-alternating limit J1 = 1, i.e. the Majumdar–Ghosh point, is approached. For the
more generic value J2 − 1

2J1 = 3
8 we show the dispersion in figure 2; it is seen that the

effective dimer approximation is of very limited value in this case. In addition to these results,
by comparing the series expansion results to spectra from exact diagonalization, we find the
following limits of validity for the dimer series expansion method: whereas the tenth-order
spectra coincide with exact-diagonalization results within a few per cent for |J1| � 1 and
J2 < 0.5, the accuracy deteriorates rapidly when the symmetric ladder ladder configuration
(J1 = 0, J2 = 1) is approached.

Whereas the dispersion is flat on the disorder line to first order in J1, J2, but develops
maxima and minima in higher orders with an apparent jump of the minimum energy from
qx = 0 to qx = π close to this line, it has been noted already [2,7] from exact-diagonalization
results that a regime with extremely flat dispersion and a minimum at finite wavevector
0 < qx < π might exist in a narrow regime in J1–J2 parameter space. We have investigated
this point again using the series expansions to tenth order, which provide us with a continuous
wavevector dependence, and have confirmed the earlier speculation: in figures 3, 4 we show
two examples for spectra on the lines J1 = 1 − 2J2 and J1 = 1

2 (1 − J2) respectively; the
points in figure 3 were discussed before in reference [2]. Figure 3 demonstrates that the
shallow minimum of the dispersion curve at a wavevector in the middle of the Brillouin zone
is reproduced in the series expansions. As a further example we show in figure 4 the flat
dispersion for somewhat smaller values of J1.
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In figure 5 we show the development of the wavevector qmin for the minimum value of
ω(q) on the line J1 = 1

2 (1 − J2) in the J1–J2 parameter space (corresponding to the case of
figure 4). The gradual transition of qmin between qmin = 0 and qmin = π , possibly with infinite
slope at the end points, is clearly seen. The comparison between results in eighth and tenth
orders illustrates the convergence of the expansion. At present, however, the series expansions
do not give a hint as regards a possible fundamental reason for the nearly flat dispersion: we
have examined the expansion coefficients an of cos(nqx) up to tenth order, but we do not find
any indication of a convergence to zero for n �= 0.

3. Interacting zigzag chains

In real materials consisting of weakly interacting chains such as KCuCl3 [4,5] and CuGeO3 [26]
it is clear from inelastic neutron scattering experiments that there is considerable dispersion
for wavevectors perpendicular to the double-chain direction. For weakly interacting chains,
the series expansion approach is to be considered as the only reliable systematic approach
which (by comparing results in subsequent orders) allows a consistency check. Whereas the
series expansions have been extended to cover systems coupled in 2D and interesting results
have been obtained for the spin–Peierls material CuGeO3 [15], for the 1/5 depleted square
material CaV4O9 [27] as well as for general parameters [28], we present in the following the
first results using the expansion for weakly interacting dimers for a 3D coupled system with
particular application to investigating the magnon dispersion in the material KCuCl3. The
zigzag chain system KCuCl3 actually appears to be closer to the dimer point than the systems
treated so far and therefore is supposed to be a better candidate for this expansion.

The structure of KCuCl3 is shown schematically in figure 6 in a projection to what is
conventionally called the xz-plane: the fundamental dimers which are shown as solid lines
form zigzag chains in the x-direction and neighbouring zigzag chains are shifted with respect
to each other in the y-direction by half a lattice constant, b/2; this shift as well as the tilting
of the internal dimer direction are indicated in figure 6 by giving the y-coordinate for each
line of spins in the x-direction (n is an integer which numbers the different planes). The
elementary cell consists of two dimers, dimer D1 at the origin �R1 = 0 and dimer D2 at position
�R2 = (0, 1

2 ,
1
2 ), and the two spins forming each dimer, 1 and 2, are at positions �Ri + �di for

spin 1 and �Ri − �di for spin 2; for definiteness we take di,z > 0.
For the exchange interactions between spins we will use the following notation: the main

intradimer exchange is denoted as J . The exchange interaction per bond between spins in
dimers separated by a lattice vector �R = la�ex + mb�ey + nc�ez is denoted as J(lmn) for the
exchange between equivalent spins (pairs (11) or (22)) of the corresponding dimers and as
J ′
(lmn) for the exchange between non-equivalent spins (pairs (12) or (21)). The following

exchange interactions will be considered: J(100) for pairs (11) and (22), J ′
(100) for the pair (12)

and J ′
(201) for the pair (12), and for the two cases p = 0 and p = 1: J(p 1

2
1
2 )

for the pair (11)
starting from dimer D1 and for the pair (22) starting form dimer D2, J(p− 1

2
1
2 )

= J(p 1
2

1
2 )

for the
pair (22) starting from dimer D1 and for the pair (11) starting from dimer D2, J ′

(p− 1
2

1
2 )

= J ′
(p 1

2
1
2 )

for pairs (12) starting from either dimer D1 or dimer D2.
Alternatively we can look at the structure projecting on the plane spanned by the directions

�ey and �ex + 1
2 �ez. In a schematic picture which shows the topology of the exchange interactions

only, we obtain figure 7; the 3D structure of KCuCl3 results when identical planes are stacked
and the fundamental dimers are connected by zigzag interactions. Evidently the planar structure
of figure 7 can be reduced to a number of limiting cases including coupled alternating chains
(J(1± 1

2
1
2 )

= 0) or coupled ladders (J(201) = J ′
(1 1

2
1
2 )

= 0).
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Figure 6. KCuCl3 structure projected on the xz-plane. Thick full lines denote the basic dimers;
the height above the reference plane y = nb is given for the two spins of one dimer in each zigzag
chain. Thin lines show interdimer interactions: full thin lines denote interactions of spins in dimers
with identical values of n; dashed and dotted thin lines denote interactions of spins in dimers with
different values of n. As indicated by the arrows, the dashed (dotted) lines start at n and end at
n− 1(n + 1). Only one interaction of each type is shown.
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Figure 7. An alternative schematic view of the structure of KCuCl3.
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If the dispersion is considered only to first order [4] or if higher orders are included in
an RPA-like approximation [5], J and J ′ for a given (lmn) enter only in the combination
J eff = 1

2 (pJ − p′J ′), where p, p′ = 1, 2 is the number of exchange paths between the
interacting dimers; J eff is called the effective dimer interaction. As already seen in the 1D
case of section 2, a correct treatment beyond first order involves J and J ′ independently.
According to previous work [4, 5] the main exchange interactions in addition to the basic
intradimer exchange are between dimers separated by (lmn) = (100), (201), (1± 1

2
1
2 ). Except

for (201) these dimer–dimer interactions involve both J and J ′ and it is our aim in the following
to discuss the validity of the effective dimer approximation for KCuCl3 and to investigate to
what extent the exchange interactions between individual spins can be determined from the
present status of experimental results.

A calculation up to second order in the ratios J(lmn)/J leads to the following expression for
the frequency of the basic triplet (frequency and coupling constants are measured in units of the
basic dimer exchange constant J and wavevectors qi are given in units with the crystallographic
lattice constants a, b, c set equal to unity):

ω(�q) = 1 + δω(1)(�q)− 1

2
δω(1)

2
(�q) + J(100)(J(100) − J ′

(100))−
1

4
J ′2
(100) cos qx

+ J(0 1
2

1
2 )
J ′
(0 1

2
1
2 )

+ J(1 1
2

1
2 )
J ′
(1 1

2
1
2 )

+
1

2
(J 2
(0 1

2
1
2 )

− J ′2
(0 1

2
1
2 )
) cos

qy

2
cos

qz

2

+
1

2
(J 2
(1 1

2
1
2 )

− J ′2
(1 1

2
1
2 )
) cos

qy

2
cos

2qx + qz
2

− 1

4
J ′2
(201) cos(2qx + qz). (4)

Here

δω(1)(�q) = 1

2
(2J(100) − J ′

(100)) cos qx + (J(0 1
2

1
2 )

− J ′
(0 1

2
1
2 )
) cos

qy

2
cos

qz

2

+ (J(1 1
2

1
2 )

− J ′
(1 1

2
1
2 )
) cos

qy

2
cos

2qx + qz
2

− 1

2
J ′
(201) cos(2qx + qz) (5)

is the dispersion to first order in the exchange constants, i.e. the effect of simple propagation
of an excited dimer triplet.

In equation (4) we have used for simplicity an extended-zone scheme: since there are two
dimers in the proper crystallographic unit cell, there are two branches of triplet excitations
for each wavevector in the crystallographic Brillouin zone (−π < qyb, qzc � π ). Owing to
the symmetry of the exchange interactions in the Hamiltonian, these two branches join to the
unique smooth expression given in equation (4), when the doubled zone

−2π < qzc + qyb, qzc − qyb � 2π

is used. Each triplet excitation, however, is present at all equivalent wavevectors of the
crystallographic reciprocal lattice. For a discussion of dipole transition amplitudes the non-
interacting triplet approximation can be used as sufficient guide and gives the following
results [5]: for momentum transfer perpendicular (parallel) to �ey the branch of equation (4)
in the first (second) crystallographic Brillouin zone gives the only non-vanishing contribution.
(A change form the first to the second crystallographic Brillouin zone then corresponds to a
change in either qy or qz by 2π , i.e. to a change of sign of the interactions in the (0 ± 1

2
1
2 ) and

(1 ± 1
2

1
2 ) directions.)

We note that the wavevector qz should be distinguished from the quantity q⊥ which is
often used to denote the two values of the quantum number parity discussed in section 2 as
q⊥ = 0, π . This wavevector is measured in units of c̃−1, where c̃ is the rung length, which
differs from the reduced lattice constant c/2. In experiments, so far only the basic triplet with
q⊥ = π has been observed and the interchange of minima with variation of qz is an effect
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of the crystallographic lattice geometry and not of the 1D ladder geometry. Excitations with
q⊥ = 0 are excitations with two dimer quanta and have a minimum energy of twice the gap
energy  .

In order to obtain results which are quantitatively reliable we have performed series
expansions for the 3D coupled system to fourth order following the lines described in section 2.
Because of the complex lattice we did not characterize the clusters which result in a large
number of clusters: 5532 clusters in fourth order. The convergence of these series expansion
results is excellent for the small values of the expansion parameters J(lmn)/J � 0.4 in the
application to KCuCl3.

In figures 8 and 9 we show results for dispersions along typical lines in �q-space together
with the data points from reference [5]. Dispersions are plotted only for the branch which
has non-vanishing dipole transition amplitude in lowest order leading to + or − signs in
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Figure 9. Dispersion curves for KCuCl3 in various directions in �q-space showing the variation
with J ′

(100) at fixed effective dimer interaction J100 − 1
2J

′
(100) = −0.055.

equation (4) as discussed above. We assume that the effective dimer exchange takes the values
determined in previous work [4, 5] and have therefore fixed the following combinations of
exchange parameters:

J ′
(201) = −2J eff

(201) = 0.188

2J100 − J ′
(100) = 2J eff

(100) = −0.110

J(1 1
2

1
2 )

− J ′
(1 1

2
1
2 )

= 2J eff
(1 1

2
1
2 )

= 0.160.

(6)

The interactions J(0, 1
2 ,

1
2 )
, J ′
(0, 1

2 ,
1
2 )

are found to be negligibly small. In order to demonstrate

the relevance of the individual spin exchange parameters (as opposed to the effective
description) we discuss the separations (100) and (1 ± 1

2
1
2 ) independently: in figure 8 we

present the variation of the dispersions ω(�q) in selected directions in �q-space for different
values of the coupling J(1 1

2
1
2 )

= 0, 0.2, 0.4 with the remaining parameters fixed as given
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above. It is seen that the distribution of the effective dimer interaction between parallel and
diagonal terms essentially shifts the dispersion curve by constant amounts. A comparison
to the corresponding neutron scattering results leads to the conclusion that J(1 1

2
1
2 )

= 0.200
is the most likely value. The analogous results for different values of the diagonal (zigzag)
coupling J ′

(100) = 0.1, 0.3, 0.5 are shown in figure 9. Here the frequency ω(qx = 0) (which
is the energy gap for qz = π and the dip energy for qz = 0) depends only on the effective
interaction, whereas the frequency ω(qx = π) (which is minimum for qz = 0 and a dip energy
for qz = 2π ) allows us to determine the exchange between individual spins.

Comparison of our series expansion results to the neutron scattering data then leads to the
following values for the exchange constants for individual spins, not yet determined by the
values for the effective dimer interactions published so far:

J(100) ≈ −0.005

J ′
(100) ≈ 0.100.

These values imply that the ladder system in KCuCl3 is much closer to an alternating spin chain
than was believed so far and the leg interaction tends to be ferromagnetic if it is non-zero at
all. The results for the interchain interactions in the (1 1

2
1
2 ) direction are much less conclusive.

The most likely values are

J(1 1
2

1
2 )

≈ 0.200

J ′
(1 1

2
1
2 )

≈ 0.040.

However, the error is large and the data may actually be compatible also with smaller values
for J(1 1

2
1
2 )

.

4. Conclusions

We have investigated the dispersion curve for the low-energy triplet excitations of one-
dimensional and of weakly coupled zigzag chains starting from the limit of non-interacting
dimers and performing an expansion in the interdimer interactions. The series up to tenth
order in the 1D case and up to fourth order in the 3D case were evaluated explicitly after
implementation on a workstation. In the 1D case the dispersion curves agree with those
obtained from exact diagonalization using the Lanczos algorithm for a large regime around
the dimer point; in this regime the method provides a reliable approach for calculating the
dispersion in its continuous dependence on the wavevector. In a narrow regime close to
the Shastry–Sutherland line we find the minimum of the dispersion curve at an intermediate
wavevector kmin, 0 < kmin < π . As an application of the 3D case we present the application
of the method to the KCuCl3 structure. Fitting to the dispersion as measured in inelastic
neutron scattering experiments [5], we determine the exchange interchange interactions
between individual spins in addition to the effective interaction between dimers determined
before. It is shown that the effective dimer approximation, when treated in the random-phase
approximation, sums up the leading powers of the dimer expansion.
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